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Abstract
To address the incompatibility of Zhang–Rice singlet formation and the observed spin glass
behavior, an effective model is proposed for the electronic behavior of cuprate materials. The
model includes an antiferromagnetic interaction between the spin of the hole in a Zhang–Rice
orbital and the spin of the hole on the corresponding copper site. While in the large interaction
limit this recovers the t–J model, in the low energy limit the Zhang–Rice singlets are deformed.
It is also shown that such deformation can induce random defect ferromagnetic (FM) bonds
between adjacent local spins, an effect herein referred to as unusual double exchange, and then
spin glass behavior shall result in the case of localized holes. A derivation of the model is also
presented.

1. Introduction

An interesting problem in understanding hole-doped cuprate
superconductors such as La2−xSrx CuO4 is that of the
intervening phase, namely the spin glass (SG) between
antiferromagnetism (AFM) and superconductivity (SC) in the
phase diagrams, with regard to temperature T and doping
level x [1]. One impetus for studying SGs is to discover
the meaning of the similarity and differences between the
phase diagram of hole-doped compounds and that of electron-
doped compounds such as Nd2−xCex CuO4 [2]. Perhaps the
most remarkable difference just comes from SG, which occur
exclusively for hole-doped materials [2]. If all differences have
the same origin, then decoding the SG behavior will provide
very useful information that may put stringent constraints on
the architecture of the microscopic model, which remains
controversial. In view of recent experiments aimed at
investigating the properties within the low-doping regime [3–5]
where SG occurs, it becomes even more urgent to understand
the nature of this phase.

Shortly after the original discovery of cuprates, the SG
phase transition from AFM was theoretically proposed to
happen at low doping levels [6]. Indeed, this transition was
later observed experimentally, and it has been used to explain
the rapid destruction of AFM upon doping [7]. This proposal

assumes that every excess hole is totally localized on a single
O site situated between two Cu sites, that is a Cu–O–Cu
configuration. Then the spin of such a hole could couple
to its neighboring Cu spins simultaneously, and, regardless
of the sign of this coupling, an effective ferromagnetic (FM)
correlation should develop between these Cu spins [6]. Thus,
given randomly distributed localized holes, those effective
defect FM bonds should also be randomly spread amid the
original host AFM bonds, implying SG transition at certain
critical doping levels [6].

The above proposed Cu–O–Cu configurations were
once suggested as the correct basis states for describing
quasi-particle states of an O hole moving in some FM
background [8]. However, this suggestion must be abandoned
for several reasons, as stressed by Zhang and Rice in [9]. The
most compelling of those reasons is based on an important
symmetry that is primarily due to the signs of Cu and O
atomic wavefunctions [9]. As a result of this symmetry, only
symmetric O states, Piσ (see below), which make up half the
number of the total O states, couple to Cu spins, while the
other half of the O states are non-bonding and hence irrelevant
to low energy physics. Therefore, despite its potential in
explaining the SG transition, the O-centered Cu–O–Cu basis,
which contains all O states and does not differentiate between
bonding and non-bonding O states, is inconsistent with such
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symmetry considerations [9]. By virtue of this symmetry, only
symmetric O states should be present in effective microscopic
models. So, an O hole should never be absolutely localized on
a single O site within low energy physics1.

Highlighting this symmetry, Zhang and Rice in their
famous work [10] were able to map the triple-band Emery
model onto a single-band t–J model. They kept only
symmetric O states and found strong AFM interaction between
the hole on a symmetric O state and the Cu spin in the same
CuO4 plaquette. They argued that this interaction should drive
the O hole to form a singlet with the Cu spin, which is spinless
and should behave in the same manner as a doubly occupied Cu
site. Thus, as they concluded, a single-band t–J model would
suffice for the low energy physics. Such singlets have already
been verified experimentally [11].

However, as noticed by some authors [6, 12], in terms of
perfect Zhang–Rice singlets (ZRS) the t–J model seems not to
be able to reproduce SG behaviors. Actually, had this model
been able to do so, SG would also have occurred in electron-
doped materials [2] because the t–J model seems even more
suitable for electron-doped materials than for hole-doped ones,
since in the former the O sites are less complex. Now people
tend to believe that the destruction of AFM upon doping occurs
in essentially different ways in the two families of cuprates.
In the hole-doped family the destruction is accompanied by
SG transition, whereas in the electron-doped one it is directly
associated with gradual dilution of Cu spins [13]. This dilution
can be well understood with the t–J model, assuming holes
are localized, which corresponds to infinite |J/t|. At the other
extreme, with infinite |t/J |, one gets freely moving holes. But
one can hardly get SG within this context [14].

We are then left with a dilemma: although both SG
and ZRS are well established, they seem incompatible. To
address this incompatibility, in this paper we claim that ZRS
are in fact not perfect but somewhat deformed, primarily due
to the requirement of reducing the kinetic energy of doped
holes. We show that such deformation can create considerable
FM correlations between close Cu spins, and in the case
of localized holes SG transition should emerge. Following
the widely accepted ideas, we assume that the fundamental
physics is obeyed by CuO2 planes and that every planar Cu
site is singly occupied by holes (see figure 1). We work
with the hole representation, in which the vacuum is denoted
by |0〉 ≡ |2p63d10〉. In obtaining a model for our purpose
we have been scrupulously guided by the above discussions
implying incompatibility between SG and ZRS. Firstly, due
to the mentioned symmetry, only symmetric O states should
be included to accommodate holes. Secondly, the AFM
interaction discovered by Zhang and Rice must be present, and
is indispensable in the formation of ZRS. Thirdly, one has to
add two terms to account for the motion of excess holes and
the AFM order, respectively. Summarizing these conditions,

1 In fact, for the system studied in [8], a localized state necessitates
the presence of all momentum quasi-particle states. However, only the
zero momentum state, which obviously respects the said symmetry, can
be written as a superposition of all Cu–O–Cu configurations; this is a
complete coincidence, because none of the other states can be. Therefore, a
localized state cannot be a superposition of Cu–O–Cu configurations. Such
superposition cannot even give the correct density of states [9].

Figure 1. Schematic illustration of the CuO2 plane: the dotted line
encloses a plaquette, filled circles being Cu sites and open ones being
O sites, Mi; j1 = Mi; j4 = 1 and Mi; j2 = Mi; j3 = 2. The spacing
between two neighboring Cu sites is set to unity. The horizontal unit
vector is �x and the vertical one is �y.

the minimum model may be put as a sum of three terms, that
is,

H = HK + Ht + HJ . (1)

Explicitly,
HK = K

∑

i

Si · si (2)

where Si is the Cu spin on site �Ri and si is the spin operator of
O holes. Also,

Ht =
∑

i,i ′
tii ′φ

†
iσ φi ′σ (3)

where tii ′ are hopping constants, which, as shown in
what follows, are negative for nearest neighbor (nn) pairs
and negligible but maybe positive otherwise, and φiσ are
orthogonal symmetric O orbitals (see below). Finally,

HJ = J
∑

〈i, j〉
Si · Sj (4)

where the sum is taken over all nn pairs. In these expressions
both K and J � K are positive and si = 1

2

∑
σσ ′ φ

†
iσ τσσ ′φiσ ′ ,

τ being the Pauli matrices. We see that HK is responsible for
ZRS, Ht for the motion of holes and HJ for AFM order. A
pictorial illustration of H is given in figure 2.

It is noted that H is double band rather than single band.
There is evidence calling for double-band descriptions [15].
This model emerges naturally from the existing facts. Let us
also see that this model is actually the same model as was
implicitly used by Zhang and Rice to derive the t–J model.
They thought that as HK dominates over other terms, the t–
J model could bear all the low energy physics. However,
as we have emphasized, the t–J model cannot admit SG.
Nonetheless, as the main result of this paper we can show
that SG does ensue from H , suggesting that H contains more
physics than the t–J model.

Let us try to understand this qualitatively. To this end it
is useful to look at an extreme of H . This extreme is taken as
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Figure 2. Schematic illustration of the model proposed in the text as
H . On each site there is a local spin (filled circle) as well as a
φ-orbital (dotted circle encircling the filled circle).

|t/K | vanishes. The physics in this limit should be completely
determined by HK , whose eigenstates are just perfect ZRS and
corresponding triplets. These triplets are higher in energy than
ZRS by K and can be ignored at low temperatures. Therefore,
this extreme is equivalent to the Zhang–Rice t–J model.
However, at small but finite |t/K |, ZRS should no longer
be perfect due to perturbation from Ht , which can deform
ZRS. It is just this deformation that makes the difference.
Roughly, this occurs by a mechanism that is analogous to
double exchange (DE) [16–18]. Because of hopping, an O
hole can simultaneously couple to several Cu spins, resulting
in effective FM alignment of Cu spins. However, in the usual
DE the carrier–spin coupling is FM, while in the present case
it is AFM. As will be shown below, quantum effects are robust
in this case and must be considered. To draw the distinction,
we shall use unusual DE (UDE) instead of DE for the present
case.

Although we have emphasized the empirical aspects of H ,
a systematic derivation will be given in section 2. Section 3 is
devoted to SG, wherein we shall first show how the problem
in the case of localized holes can be reduced to a double-site
model, and then we solve this model to clarify UDE. Some
discussions shall also be given in this section. In section 4 we
give a summary.

2. Deriving the model

In section 1 we argued that the structure of H has been tightly
restricted by empirical facts. Here we hope to perform a formal
derivation to make H even sounder.

The starting point is the Emery model [19], in which only
orbitals that participate in planar σ -bonds are present. This
model may be given as

H = �Np + U
∑

i

ni↑ni↓ +
∑

σ,i; j

(Vi; j d
†
iσ p jσ + h.c.) (5)

where i and j refer to the i th Cu site and the j th O site
that is nearest to this Cu site, respectively; p- and d-class

operators annihilate O and Cu holes, respectively; and Np =∑
jσ p†

jσ p jσ and niσ = d†
iσ diσ . Coefficients in the equation

are the charge-transfer gap, �, which is the energy cost of
moving a hole from Cu to O, the Cu on-site repulsion U and the
hopping integral Vi j = Vji = (−1)Mi; j V , V being a constant
and (−1)Mi; j the pre-factor indicating the phase (figure 1).
An energy reference has been chosen in which the on-site Cu
energy vanishes. As said, we shall work in a subspace whose
states have every Cu site singly occupied. One may deduct the
chemical potential μ from � to fix the average total number
of doped holes. If applied to electron-doped cuprates the
Emery model will simply reduce to the t–J model within the
said subspace [20]. We shall assume holes sit on Zhang–Rice
orbitals. To build these orbitals we have to at first construct for
every copper site �Ri the following two orbitals

Ps/A
i = (1/2)

(∣∣∣∣i ; i + �y
2

〉
±

∣∣∣∣i ; i − �y
2

〉
+

∣∣∣∣i ; i − �x
2

〉

±
∣∣∣∣i ; i + �x

2

〉)

where �x and �y are basis vectors of the Cu sub-lattice. We see
that these two kinds of orbitals, although not orthogonal, can be
readily used to span a complete Hilbert space to accommodate
O holes, because each O site has only one effective p-orbital
(either px or py) and the total number of planar O orbitals
is twice the number of planar Cu sites. The inclusion of
spin indices yields Ps/A

iσ ≡ Ps/A
i ⊗ |σ 〉. These orbitals are

not mutually orthogonal. However, following Anderson [21],
one can construct from them a complete set of normalized
orthogonal basis states. To this end, we shall first define the
following φs

i orbitals [10]

φs
iσ =

∑

i ′
λ(i ′ − i)Pi ′σ

where

λ(i ′ − i) = 1

N

∑

k

[
1 − 1

2
(cos kx + cos ky)

]−1/2

eik·(Ri′ −Ri )

is a normalization factor. It is easy to verify their orthogonality.
Next, a similar set for P A can also be obtained as φA

iσ =∑
i ′ λ̄(i − i ′)P A

i ′σ , where

λ̄(i − i ′) = 1

N

∑

k

[
1 + 1

2
(cos kx + cos ky)

]−1/2

eik·(Ri′ −Ri ).

In the above, N is the number of total Cu sites or CuO2

units, for example. It is useful to note that, as displayed in
figure 3, although both λ(y) and λ̄(y) are decaying functions
peaked at the origin only λ̄ is oscillatory (that is to say,
λ̄(i ′ − i)λ̄(i ′ − i − �e) < 0). Whereas both the s-set and A-
set are individually orthonormalized, their direct sum is not,
because φs is not always orthogonal to φA. Actually, we can
prove 〈φA

iσ |φs
i ′σ 〉 ≈ g(�e)δi−i ′ ,�e, with |g| ≈ 1

4 and �e being �x or
�y. Nevertheless, the standard Gram–Schmidt procedure allows
one to construct the following φa orbitals:

φa
i = 1√

4|g|2 + 1
[φA + |g|(φs

i+�x − φs
i−�x + φs

i−�y − φs
i+�y)]

3
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Figure 3. Numerical values of λ (the upper number) and λ̄ (the lower
number) computed on a 40 × 40 lattice. The reference point is
labeled by R.

which, to the order of g, are mutually orthogonal and also
orthogonal to all φs orbitals.

Now expressing the original p-orbitals as a linear
combination of φ-orbitals, the Emery model can be recast as

H = U
∑

i

ni↑ni↓ +
∑

ν,ν′ ,i,i ′,σ
�̃νν′

ii ′ φ
ν†
iσ φν′

i ′σ

+
∑

i,i ′,σ,ν

(Ṽ ν
i i ′ d†

iσ φν
i ′σ + h.c.) (6)

where ν = s/a and

Ṽ ν
i i ′ =

∑

j

Vi jω
ν
j i ′ ; �̃νν′

ii ′ = �
∑

j

ων∗
j i ω

ν′
j i ′

with ων
j i = 〈φν

iσ |p jσ 〉 being the expansion coefficients. Let

us note that �̃νν
i i = �, a result of the fact that �̃νν

ii and
� mean the same charge-transfer gap. To proceed, we need
to confine ourselves to the subspace where all Cu sites are
singly occupied by holes. This can be formally implemented
using the canonical perturbation method that was utilized by
Zaanen [22]. Following Zaanen exactly and noticing that
all projection operators involved in this method concern only
d-orbitals and all other orbitals are left intact, we could
up to a trivial renormalization constant obtain the following
Hamiltonian defined in the subspace under consideration

H′ =
∑

i i ′i ′′νν′
J νν′

i i ′i ′′ Si ·
∑

σσ ′
φ

ν†
i ′σ �τσσ ′φν′

i ′′σ ′

+
∑

i i ′νν′σ
tνν′
i i ′ φ

ν†
iσ φν′

i ′σ + J
∑

〈i,i ′〉
Si · Si ′ (7)

where J = 2V 4

�2 [ 4
�

+ 3U−4�
(U−�)2 ] and

J νν′
i i ′i ′′ =

(
1

�
+ 1

U − �

)
Ṽ ν

i ′i Ṽ
ν′
ii ′′

while

tνν′
i i ′ = �̃νν′

i i ′ + 1

2

∑

i ′′

(
1

�
− 1

U − �

)
Ṽ ν

ii ′′ Ṽ ν′
i ′′i ′ .

For later discussions, let us specify the expressions for all the
relevant parameters. First of all, those concerning expansion
coefficients are not hard to get and can be given as

ωA
ji ≡ 〈φA

iσ |p jσ 〉 = 1
2 (λ̄(i − jw) + λ̄(i − jw̄))

ωs
j i = 1

2 (λ(i − jw) − λ(i − jw̄))

where, if j indicates the O site at �R j , the jw/w̄ denotes the
position of its nearest Cu site that is either below (above) it or
to the right (left) of it, or say, w = down/right and w̄ = up/left.
From the properties of functions λ and λ̄, one could infer
that those ω are generally very small except when i coincides
with either jw or jw̄. This reminds us that we may drop the
last four terms of φa to simplify the computation. Although
there are four such terms in total, in effect only one of them
will contribute at a time under any situation. For example,
the four Cu sites that correspond to the last four terms of
ωa

j i ≈ ωA
ji + |g|(∑�e sgn(�e)ωs

j,i+�e) can never be adjacent to
j simultaneously and, for a given j , there is one site which
can be next to it. Therefore, in comparison with the leading
term, the last four terms can be left out for simplicity. And
all later calculations will refer to this approximation. Another
helpful property is

∑
j∈{i} ω

A
jiω

A
ji ′ = ∑

j∈{i} ω
s
j iω

s
j i ′ , where {i}

is the set of positions of O sites belonging to the i th plaquette.
This property illustrates the fact that, were it not for terms other
than hopping ones, neither φs nor φa would be singled out as
the temperature decreases. Indeed, as we shall show in what
follows, it is the first term in H′ that discriminates between
them. To make this clear, explicit expressions for Ṽ are needed.
They read

Ṽ a
ii ′ = V

2
{λ̄(i ′ − i − �y) − λ̄(i ′ − i + �y)

+ λ̄(i ′ − i + �x) − λ̄(i ′ − i − �x)}
Ṽ s

ii ′ = V

2

{
4λ(i ′ − i) −

∑

�e
λ(i ′ − i − �e)

}
.

Now it is straightforward to realize that Ṽ a is zero for i = i ′
and extraordinarily small for other cases, whereas Ṽ s is fairly
large for i = i ′ and similarly minute for other cases. Therefore
it is reasonable to ignore products involving Ṽ a . Thus, in the
first sum of H′ we need only keep the term headed by J ss

ii ′ i ′′ ,
which in fact is significant only for i = i ′ = i ′′. In other words,
Kondo-like scattering is negligible (however, these scattering
terms were once used to dismiss the t–J model [8]) and only
Heisenberg coupling of strength K0 ≡ J ss

iii should be retained.
This is self-evident, since such scattering involves a couple of
sites and must occur only with difficulty. This analysis shows
φa form a non-bonding band, while φs give rise to a bonding
and an anti-bonding band, a result quite consistent with the
analysis of Zhang and Rice [9, 10]. The non-bonding band is
irrelevant and can be traced out. We assume that such tracing
out will not lead to new structures differing from the structure
of H and that it will at most result in renormalization factors to
parameters such as K0 and t ii ′

0 ≡ t̃ ss
ii ′ . As can be demonstrated

numerically, t ii ′
0 is a rapidly decaying function that’s negative

for nn hopping but positive for nnn pairs.
Using K and t to denote the renormalized parameters

eventually confirms the effective Hamiltonian H (equation (1))

4
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3. Spin glass

In this section we shall demonstrate how a SG can result
from the interplay between HK and Ht . This section, for
the sake of clarity, will be divided into three subsections.
In the first of them it is shown that the whole problem
eventually boils down to a double-site problem if doped holes
are localized and sparse. Thereafter, in section 3.2, this two-
site problem is solved to display deformation of ZRS and
how this deformation creates FM correlations between Cu
spins. Section 3.3 contains additional remarks meant for the
completeness of the argument presented in this paper.

3.1. SG at low doping

Suppose we inject only a few excess holes into a CuO2 plane.
These holes will be well localized, as observed in experiments
at low doping [23]. Now that these holes are very sparse and
hence well separated on average, there should be negligible
spatial correlation between them, that is each of them can
be dealt with independently. So, let us focus on one such
localized hole. Primarily due to Ht , which tends to delocalize
this hole so as to lower its kinetic energy, the localized state
this hole finds itself in should in general have a spread of
several plaquettes, which means that, because of HK , this
hole couples simultaneously to several Cu spins belonging to
these plaquettes. As a consequence, we expect effective FM
correlations among these spins. This effect will be referred to
as UDE. Now, in the spirit of section 3.2, one can be convinced
that, the UDE strength should decline as the localized state size
increases, although the possible lowest kinetic energy the hole
can take remains unchanged (it is always −|t|). Therefore,
when taking into account the originally existing AFM coupling
(HJ ) between Cu spins, the best strategy to minimize the total
energy (including both the spin energy and the kinetic energy)
is to let the localized state extend over only two plaquettes.
This argument is similar to the argument once used to estimate
the size of a spin bag [24]. We note that the configuration
suggested here may be verified by a variational method within
the semi-classical frame, as in [25]. In summary, a localized
hole should take an orbital state of this form, which may be
called a rectangle state as depicted in figure 3,

| �Ri , �e〉 = 1√
2
(|φ �Ri

〉 + |φ �Ri +�e〉) (8)

which induces an FM bond, |i ; �e〉, whose strength will be
shown to be much larger than J , connecting two spins, S �Ri

and S �Ri +�e . Note that the hole’s spin can be either up or
down (see section 3.2) but it cannot have both components
present simultaneously in the thermodynamic ground state, due
to spontaneous time reversal symmetry (TRS) breaking that
usually occurs in infinite spin systems. Therefore, the total
spin of the entire system should not be zero on average, in
agreement with experiments [26, 27]. This symmetry will
certainly be restored for the isolated double-site system to
be discussed. Along the above line of thought, we naturally
arrive at this conclusion: every localized hole makes a FM
bond between adjacent Cu spins, and in the case of randomly

quenched holes, these FM bonds will be distributed randomly;
then, according to general theory [28–30], a bond-disordered
SG should result.

3.2. UDE

In section 3.1 we argued that a localized hole should have a
spatial extension of around two plaquettes and, due to DE,
FM coupling should be initiated between the Cu spins on these
plaquettes. However, it should be noted that previous work on
DE is largely concerned with situations where the carrier–spin
coupling (in the present context, K < 0) is FM and the spins
are large so that they can be treated as classical vectors [16–18].
These works showed that the DE strength is first order in the
hopping constant t , independent of K . This result should not
apply to the present case, where one is concerned with small
one-half spins and AFM carrier–spin coupling. It is expected
that quantum effects are important in this case. Indeed, the
UDE strength we found is only second order in t and hinges
on K , usually much larger than J , which is of order t4. But
as K goes to infinity, its strength vanishes. To explore UDE,
we shall perform perturbation analysis accompanied by exact
numerical calculations on a double-site model.

This double-site system contains one hole and two Cu
spins (local spins), one spin for each site. Anticipating that
the J -term has little to do with UDE, we will not mention it for
the moment. Now H becomes

H12 = t
∑

σ

(φ
†
1σφ2σ + h.c.) + K (s1 · S1 + s2 · S2) (9)

where t < 0 and K > 0. Here the on-site energy has been set
to zero, which should not affect our results.

It is instructive to consider two limits of H , in one of
which |t/K | � 1 while in the other |t/K | � 1. The latter
case is our main concern. It will be shown that in both limits
we end up with effective FM coupling between S1 and S2. Let’s
begin with the former, in which hole hopping dominates and
localization of the hole shall lift the energy drastically. Thus,
an itinerant hole is favored and a FM combination of S1 and
S2 should result. To elucidate this, it is better to work with
a delocalized representation. We then introduce the plus- and
minus-orbitals expressed by

φ±σ = 1√
2
(φ1σ ± φ2σ )

which bring the first term of H12 into a diagonal form. In terms
of these two orbitals, H12 could be recast as

H12 = H+ + H− + V

where H− can be obtained from H+ by replacing φ+σ (φ†
+σ )

with φ−σ (φ†
−σ ) and

H+ = tφ†
+σ φ+σ + K

2
(S1 + S2) · s+

V = K

4
(S1 − S2) ·

∑

σσ ′
(φ

†
+σ �τσσ ′φ−σ ′ + h.c.).

(10)

5
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Obviously, V means Kondo-like scattering, which necessarily
involves both the plus state and the minus state. Since this
scattering relates to the difference of S1 and S2, it favors AFM
alignment of these two spins and FM configuration will lessen
its effect.

However, this scattering should be essentially suppressed
at low temperatures in the case of large |t|, because the
minus state is energetically unfavored due to its higher energy
(−t). Henceforth, the low energy physics is essentially set
by H+, with minute modifications from scattering. Since the
first term of H+ commutes with the hole’s spin operator s+,
the eigenstates of H+ are identical with that of its second
term, whose eigenstates are well known and can be written
as |

z L〉, which is labeled with three q-numbers [6]. Here

 = S1 + S2 + s+ and L = S1 + S2. As can be exactly
shown [6], regardless of the sign of K , the ground state |G N D〉
always has L = 1, which implies parallel alignment of S1 and
S2. Actually, if we use 〈S1 · S2〉 as an indicator, we could
find 〈G N D|S1 · S2|G N D〉 > 0. For example, if K > 0,
|G N D〉 = | 1

2
±1
2 1〉 and 〈S1 · S2〉 = 1

6 , thus concluding an
effective FM coupling. Were two spins AFM correlated in a
state, the indicator would be negative in this state. For example,
〈 1

2
1
2 0|S1 · S2| 1

2
1
2 0〉 = − 3

4 .
Let us note that in this extreme one does not get a Zhang–

Rice singlet at all, which suggests crossover within H12.
Going to the other extreme, where |t/K | � 1 and

the hopping term may be taken as a perturbation, one still
envisages FM coupling between S1 and S2. Pictorially,
hopping, be it small or large, between two sites will make
the hole couple simultaneously to spins on the sites and hence
entails FM interaction. Thus, the hole can be taken as some
gluon that is running between the spins and then glues them.
Evidently, H12 at t = 0 has 16 eigenstates in total, of which 4
are composed of Zhang–Rice singlets and the other 12 consist
of triplets. As a guide to the labeling of these states, a state in
which there is a singlet on site 1 and a spin with σ (↑ or ↓)
on site 2 shall be written as |1Z R; 2σ 〉. Generally, these states
may be written as |1Z R/α/β/γ ; 2σ 〉 and |2Z R/α/β/γ ; 1σ 〉, the
meanings of which shall become clear later. However, one may
also use another representation with a basis state written as
|1/2σ ; S1z S2z〉 ≡ |1/2σ 〉 ⊗ |S1z S2z〉, which has a hole with
spin σ on site 1/2. The relations between these representations
are as follows:

|1Z R; 2σ 〉 = 1√
2
(|1↑; ↓σ 〉 − |1↓; ↑σ 〉)

|1α; 2σ 〉 = |1↑; ↑σ 〉;

|1γ ; 2σ 〉 = 1√
2
(|1↑; ↓σ 〉 + |1↓; ↑σ 〉)

|1β; 2σ 〉 = |1↓; ↓σ 〉.

(11)

Similar expressions for |2Z R/α/β/γ ; 1σ 〉 can also be easily
obtained. As mentioned, there are four degenerate singlets
that form a subspace of energy − 3K

4 while the remaining
degenerate states belong to another subspace of higher energy
K
4 . At low temperatures, the latter is much less important and

we thus focus on the former.

Now let us add the small hopping term as a perturbation.
Conventional degenerate perturbation theory shall, to zeroth
order, mix |1Z R; 2↑/↓〉 with |2Z R; 1↑/↓〉 to form

|±; ↑/↓〉 ≡ 1
2 (|1Z R; 2↑/↓〉 ± |2Z R; 1↑/↓〉). (12)

And their energies are E↑/↓
± = − 3K

4 ± t
2 , which implies that a

singlet hops with strength t
2 . To get the effective coupling, we

find it is necessary to include the first order correction to the
above states, which implies that the UDE strength is of order
t2. After some calculation we arrive at the following corrected
states:

|+; ↑〉c = |+; ↑〉 − t

2K − t

{
[|1α; 2↓〉 + |2α; 1↓〉]

− 1√
2
[1γ ; 2↑〉 + |2γ ; 1↑]

}

|−; ↑〉c = |−; ↑〉 − t

2K + t

{
[|2α; 1↓〉 − |1α; 2↓〉]

+ 1√
2
[1γ ; 2↑〉 − |2γ ; 1↑]

}

|+; ↓〉c = |+; ↓〉 + t

2K − t

{
[|1β; 2↑〉 + |2β; 1↑〉]

− 1√
2
[1γ ; 2↓〉 + |2γ ; 1↓]

}

|−; ↓〉c = |−; ↓〉 + t

2K + t

{
[|2β; 1↑〉 − |1β; 2↑〉]

+ 1√
2
[1γ ; 2↓〉 − |2γ ; 1↓]

}
.

(13)

Let us note that these expressions respect time reversal
symmetry (TRS).

Clearly the corrected states have essentially the same
energy orders as before, that is plus states are lower than
minus states by nearly |t|. It is straightforward to evaluate the
indicators over them. We found

〈S1 · S2〉+↑/↓ = −3

2

t

2K − t

(
1 + t

2K − t

)

and

〈S1 · S2〉−↑/↓ = 3

2

t

2K + t

(
1 − t

2K − t

)
.

Therefore, as long as t < 0 and K > 0, the plus state will have
lower energy and should be favored at low temperatures and
its indicator will be always positive, invariably indicating an
effective FM coupling. According to Zhang and Rice [10], for
U = 2� one gets t ∼ −3 V 2

�
and K ∼ 15 V 2

�
. With these

estimations, 〈S1 · S2〉+ ∼ 0.15. As t/K vanishes, the FM
coupling, the strength of which should scale as ∼t2/K , will
vanish as well. This property thus supplies one further piece of
evidence against t–J model in addressing problems about spin
glass.

To gain further insight into the structure of the corrected
states, it is useful to rearrange them into another form. For

6
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Figure 4. Schematic illustration of a rectangle (the area enclosed by
dashed line) and an example of how the rectangle may be relatively
isolated due to lattice distortion. The arrows indicate how each atom
is displaced. The phonon shown has a mixing character. Lattice
distortion shall increase lattice energy, which, however, may be
compensated by a decrease in other energy components. This is
possible due to increase of hopping constant within the rectangle.
Increase of t shall increase K and J and thus may reduce spin
energy. Further work is needed to find out whether these energies can
be balanced.

example,

|+; ↑〉c = 1 − 3|η|
2

(|1↑; ↓↑〉 + |2↑; ↑↓)

+ 2|η||φ+↑〉 ⊗ |↑↓〉 + |↓↑〉√
2

− |η| + 1√
2

|φ+↓〉 ⊗ |↑↑〉

where η = t
2K−t . One may say that the first line represents an

incoherent AFM component which will not lead to coherence
between |↑↓〉 and |↓↑〉 but has negative 〈S1 · S2〉. However,
the last two lines are coherent FM components. At η =
0, the AFM component cancels out FM components. As
|η| increases, the FM components grow whereas the AFM
component wanes. Any one FM component can be roughly
obtained by rotating the other component. A similar analysis
is also applicable to other states.

To supplement the above analytical consideration, we
have performed numerical calculation to further investigate the
nature of the system’s ground state. We used a computer to
directly diagonalize H12 in the representation {|iσ ; S1S2〉, i =
1, 2}. And the ground state is found to be doubly degenerate
due to TRS. Thus, without losing any generality we only
consider one of the two ground states. Further, t was set to
−1 so that only one parameter K had to be varied. Numerical
results exhibit that the ground state under consideration could
always be approximated as

|αβγ 〉 ≡ α(|1↑; ↓↓〉 + |2↑; ↓↓〉)
+ β(|1↓; ↑↓〉 + |2↓; ↓↑〉)
+ γ (|1↓; ↓↑〉 + |2↓; ↑↓〉)
≡ α|a〉 + β|b〉 + γ |c〉

where the last line defines three states |a/b/c〉 and |α| >

|β| > |γ |. All coefficients are real. Meanwhile, we found
|α| was always around 0.5, and |β| increased to 0.5 as K
went to infinity but at the same time |γ | disappeared gradually.
Besides, αβ < 0 and βγ > 0. This information indicates to us

Figure 5. Energy plotted against logK
10. See the annotation in figure 6

for the region indicated by the arrow.

that it may be more convenient to rewrite |αβγ 〉 as

|αβγ 〉 = {(γ − β)(|a〉 − |b〉)}
+ {(α + β − γ )|a〉 + γ (|b〉 + |c〉)}.

One could easily verify the following equations:

|a〉 − |b〉 = |Z R1〉|2↓〉 + |Z R2〉|1↓〉

|c〉 + |b〉 = (|1↓〉 + |2↓〉) ⊗ (|↑↓〉 + |↓↑〉)

|a〉 = (|1↑〉 + |2↑〉) ⊗ |↓↓〉.

Now we see that (|a〉− |b〉) is just a pure ZRS state while both
|a〉 and (|b〉 + |c〉) are pure states with L = 1. Therefore, as
K goes to infinity, the amplitude of the ZRS state is elevated to
its highest (0.5) whereas the L = 1 state gets chronically out
of order. Henceforth, there’s an evident crossover from ZRS to
the L = 1 state within the simple H12.

We have also obtained the energy in terms of those
coefficients. It reads

E = 2t (α2 + 2βγ ) + K

2
(4αβ − α2 − β2 + γ 2). (14)

Evidently, the terms in the first bracket come from the kinetic
energy while those in the second from the magnetic potential
energy. Even from this expression, one could infer the
competition between ZRS and the L = 1 state. For example,
if K is much smaller than |t| kinetic energy dominates,
so for E to be ground state energy one should let βγ be
maximized under the constraint that α2 + β2 + γ 2 ≈ 1

2 , which
means β ≈ γ , whence ZRS is of little importance in this
example. Generally, one could use the variational principle
to establish the expressions of all coefficients in terms of K
and t . However, we would rather plot the energy in figure 4
and other quantities in figure 5. Clearly the indicator, using the
expression of |αβγ 〉, can be written as

〈S1 · S2〉 = α2 − β2 − γ 2

2
+ 2βγ

and is positive all the way up to K = ∞, a result consistent
with earlier analytical considerations.

7
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Figure 6. The absolute values of all coefficients and the indicator
plotted versus logK

10. Let us point out that the non-analytic features as
indicated by the arrows should not be regarded as singularities
intrinsic to the system, rather they should be seen as flaws of the
approximate expression of the ground state.

(This figure is in colour only in the electronic version)

3.3. Additional remarks

For completeness of this paper we add a couple of remarks as
follows.

(1) Obviously, the above described SG phase breaks TRS
and local translational symmetry, and it also reduces
the 90◦ rotation C4 symmetry down to 180◦ rotation
C2 symmetry. Further, every rectangle state is O-
centered rather than Cu-centered. All these features
are in agreement with experiments [3–5]. Although
these features are shared by Cu–O–Cu configurations, it
is still possible to distinguish them from our rectangle
states because the latter are stabilized by UDE, which
is special in some respects. For example, UDE can
lead to an unusual temperature dependence of magnetic
susceptibility [17]. Besides, there must exist some
relations between SG transition temperature and electrical
conductivity, since both quantities are linked with t . In
fact, similar relations have already been found between
Curie temperature and electrical conductivity [16]. The
establishment of these relations, which are unique to
UDE-caused SG, will be published elsewhere.

(2) The SG phase is glassy not only in spin but also in charge,
namely the charges associated with doped holes are also
irregularly dispensed.

(3) We note that (a) DE (or UDE) coupling cannot be written
as a sum of terms relating Cu spins by pairs [17]; (b) the
UDE strength is second order in t , but DE strength is linear
in t [16]; (c) DE (or UDE) is much more effective than a
direct FM bond in destroying the original AFM order [25].

(4) An indispensable element of the present SG theory is the
localization of doped holes. Whether this localization is
intrinsic or not to CuO2 planes is an interesting question.
Some authors ascribe it to external factors such as impurity
potential from out-of-plane dopant atoms [31]. However,
intra-plane factors may be more relevant. Firstly, it has
been demonstrated that, for carriers doped in a classical

AFM background, there should be a transition from being
self-trapped to being free at some critical doping [25].
Below this critical doping, doped carriers are self-trapped
and cause local distortion of the background. As doping
increases, they become free and uniform canting gets
stable. This transition should manifest itself as a turn
in electrical conductivity. Measurements do reveal this
trait [32]. Secondly, coupling to a phonon may greatly
assist localization. Usually the phonon is assumed to be
of pure O character. This coupling is essential in some
models of cuprates, such as the bi-polaron model. It is
also necessary in explaining isotope effects [33]. Perhaps
the simplest example illustrating how phonon interaction
may strengthen localization is shown in figure 4. More
work is required to discover the details.

(5) It is noted that the term HK tends to prevent double
hole occupation of any plaquette or any rectangle. This
is because (a) under both situations there is only one
effective orbital, which is the Zhang–Rice orbital for the
former but a rectangle state for the latter, and (b) every
orbital can admit only one singlet.

4. Summary

In summary, we have analyzed the incompatibility between
ZRS formation and SG behavior that arises within the usual
theoretical jargon. Having recourse to a different model, which
has the t–J model as one of its extremes, we are able to resolve
this incompatibility by observing that the actual ZRS should be
deformed due to the motion of doped holes. This deformation,
which is first order in t , can provoke FM coupling, which is
second order in t , between adjacent Cu spins, a phenomenon
referred to as UDE. And if holes are localized randomly, bond-
disordered SG should obtain.
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